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Elektriciteit en magnetisme 2
Instructor: A.M. van den Berg
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You don’t have to use separate sheets for every question.
Write your name and S number on every sheet
There are 6 questions with a total number of marks: 80

WRITE CLEARLY

(1) (Total 15 marks)

• (5 marks) An electric field ~E points away from you, and its magnitude is decreasing.

Will the induced magnetic field be clockwise or counterclockwise? What if ~E points
toward you and is decreasing? Explain your choices.
• (5 marks) The electric field in an electromagnetic field wave traveling north oscillates

in an east-west plane. What is the direction of the polarization? And what is the
direction of the magnetic field vector in this wave?
• (5 marks) The electric field of a plane electromagnetic wave is given by
~Ex = E0 cos(kz + ωt), Ey = Ez = 0.
Determine the direction of the propagation of this wave and the magnitude and direc-

tion of the magnetic field vector ~B.

SOLUTIONS

• Apply the Ampère-Maxwell law:

∮
S

~B ◦ d~̀= µ0Iencl + µ0ε0

∫
S

∂ ~E

∂t
◦ d~a, where there is

NO free current, but only an electric field vector which changes in time.

There is thus a displacement current density ~JD which is given as: ~JD = ε0
∂ ~E

∂t
. This

current density induces a magnetic field and the direction of ~JD controls the orientation
of the magnetic field vector.
In case the electric field vector is pointing away from you and its strength is decreasing,
the current density vector points towards you. Therefore in this case the magnetic field
lines run counter clockwise.
In case the electric field points towards you and its strength is decreasing, the current
density vector points away from you, thus the magnetic field lines run clockwise.
• The direction of the polarization coincides with the direction of the electric field vector.

Therefore, the the direction of the polarization is in the east-west plane. The direction
of the magnetic field vector is perpendicular to both the electric field vector and the
direction of the propagation. The magnetic field vector is therefore in the vertical
direction.
• We can write the argument of the cos function as: kz + ωt = k(z + ωt/k) = k(z + ct).

The wave travels in the negative z direction; ~k = −kẑ. The magnetic field vector is

perpendicular to both ~k and the electric field vector, which has only a component in

the x direction. The cross product ~E × ~B gives the direction of the propagation: thus
~B must point in the negative y direction. The magnetic field strength is: B0 = E0/c.
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(2) (Total 10 marks)
A square loop 27.0 cm on each side has a resistance of 7.5 Ω. It is initially in a 0.755 T

homogeneous magnetic field, with its plane perpendicular to ~B. It is removed from the field
in 40.0 ms. Calculate the electric energy dissipated in this process.

SOLUTIONS
When we remove the coil from the field the enclosed magnetic flux drops from an initial

value Φ1 = ~B ◦ ~n A to Φ2 = 0. Here A is the area of the coil, which is 0.272 cm2, and ~n is
the normal to this area.

Because of the change in the magnetic flux an emf will be induced as: ε = −∆Φ

∆t
.

The induced current is I =
ε

R
=

∆Φ

∆t R

The dissipated power is thus P = ε I = I2 R =
A2(∆B)2

R2(∆t)2
.

The electric energy dissipated W is the power times the elapsed time. Therefore the final

relation for W is given as: W =
A2(∆B)2

R2(∆t)
= 0.01 J.

Intermediate results are:
∆Φ = 0.055 Tm2

ε = 1.376 V
I = 0.18 A
P = 0.252 W
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(3) (Total 20 marks)
The electric and magnetic fields of an electromagnetic wave in free space are given by:
~E = E0 sin(kx− ωt)ŷ + E0 cos(kx− ωt)ẑ and
~B = B0 cos(kx− ωt)ŷ −B0 sin(kx− ωt)ẑ.
• (5 marks)

Show that ~E and ~B are perpendicular to each other at all times.
• (5 marks)

For this wave, ~E and ~B are in a plane parallel to the yz plane. Show that the wave

moves in a direction perpendicular to both ~E and ~B.
• (5 marks)

At any arbitrary choice of position x and time t, show that the magnitudes of ~E and
~B always equal E0 and B0, respectively.

• (5 marks)

At x = 0, draw the orientation of ~E and ~B in the yz plane at t = 0. Then qualitatively
describe the motion of these vectors in the yz plane as time increases.

SOLUTIONS
• Calculate the inner product ~E ◦ ~B and show that it equals 0.

• The wave moves in the direction of the Poynting vector: ~S = ( ~E × ~B)/µ0

~S =
1

µ0
~E × ~B =

∣∣∣∣∣∣
x̂ ŷ ẑ
0 E0 sin(kx− ωt) E0 cos(kx− ωt)
0 B0 cos(kx− ωt) −B0 sin(kx− ωt)

∣∣∣∣∣∣ = − 1

µ0
E0B0x̂

• Calculate the length of the vectors. Because of the sin and cos functions, only their
amplitudes count.
Thus:
| ~E| = E0

| ~B| = B0

• At x = 0 and t = 0, the values of ~E and ~B are given as:
~E(x = 0, t = 0) = E0ẑ
~B(x = 0, t = 0) = B0ŷ

If time increases the y component of the electric field becomes negative (the sin was
at t = 0 equal to 0 and there is a factor −ωt). The cos component was at t = 0 at the
maximum and then decreases, still being positive. So the electric field vector turns in
the ccw direction.
Following the same argumentation, you see that the B vector follows the E vector, but
has a phase shift of 90◦.
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(4) (Total 15 marks)
Suppose that a circular parallel-plate capacitor has radius R0 = 3.0 cm and a plate-to-plate
distance d = 5.0 mm. A sinusoidal potential difference V = V0 sin(2πft) is applied across
the plates, where V0 = 150 V and f = 60 Hz.
• (5 marks)

In the region in between the plates, show that the magnitude of the induced magnetic
field is given by B = B0(r) cos(2πft), where r is the radial distance from the central
axis of the capacitor.
• (5 marks)

Determine the expression for the amplitude B0(r) of this time-dependent field when
r ≤ R0, and when r > R0.
• (5 marks)

Plot B0(r) for the range 0 ≤ r ≤ 10 cm.

SOLUTIONS
• The magnetic field is induced by the changing electric field flux between the plates.

We use the Ampère Maxwell law (there are no free currents):∮
S

~B ◦ d~̀= µ0ε0

∫
S

∂ ~E

∂t
◦ d~a

INSIDE the radiusR0 we can take a circular path with radius r for the integral following
S and the area over which the changing electric field vector needs to be integrated has
the very same radius r. Here we note that because of symmetry reasons the magnetic

field lines run in circles (the inner product ~B ◦ d~̀= Bd`) and the surface bounded by
this path is perpendicular to the electric field vector. Thus we obtain:

B 2π r = µ0ε0πr
2∂E

∂t
So we need to know the value of E. For a simple parallel-plate capacitor the electric

field strength is given as: E =
V

d
, where V = V0 sin(2π f t).

We can combine these two equations, which gives:
B = µ0ε0πr V0 f cos(2π f t)/d, thus
B = µ0ε0πr V0 (f/d) cos(2π f t) = B0(r) cos(2π f t) with
B0(r < R0) = µ0ε0πr V0 (f/d)
• We repeat the very same exercise for the case where r > R0. Now the flux of the

electric field is bounded by the radius of parallel-plate capacitor (R0), while the path
integral for the magnetic field strength is still given by the radius r. Similar as before
the inner products in the Ampère-Maxwell equations are maximum, so we find in this
case:

B 2π r = µ0ε0πR
2
0

∂E

∂t
and B0 can be written as:
B0(r > R0) = µ0ε0π(R2

0/r) V0 (f/d)
• For r < R0 the magnetic strength grows linear with r; beyond R0, it falls off as 1/r.

At r = R0, the two expressions for B(r) are equal (as they should!) and at that point
the amplitude of the magnetic field strength has a value B0 = 1.89× 10−12 T.
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(5) (Total 10 marks)
A long straight wire and a small rectangular wire loop lie in the same plane. Determine the
mutual inductance in terms of `1, `2, and w. Assume that the wire is very long compared
to `1, `2, and w. Perform the following steps. First calculate the magnetic field induced by
the long wire as a function of the radial distance s. Then determine the flux of the magnetic
field through the rectangular wire loop. Finally, determine the mutual inductance.

SOLUTIONS
The mutual inductance is defined as the ratio of the magnetic field flux and the current by
which it is induced;

M =
Φ12

I1
.

To calculate the flux we need to know the magnetic field strength produced by the long
wire at the place of the loop. For a long straight wire this strength is given as:∮
P

~B ◦ d~̀= µ0Iencl.

Because of symmetry reasons the magnetic field lines are circular and have thus only a
component in the ϕ direction, which are therefore perpendicular to the surface spanned by
the square loop.
Therefore the magnetic flux through the rectangle is given as:

Φ12 =

∫ `2

`1

∫ w

0
B dzds, where B =

µ0I1
2πs

The field is constant as function of z and goes as 1/s as function of s, the radial distance.
If we integrate a 1/s function, we find as the result a ln(s) function. The result for the
mutual inductance is therefore:

M =
µ0w

2π
ln

(
`2
`1

)
.

This depends only on geometrical factors as it should!
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(6) (Total 10 marks)

In a circular region, there is a uniform magnetic field ~B pointing into the page. An xy
coordinate system has its origin at the center of this circular region. A free positive point
charge +Q = 1.0 µC is initially at rest at a position x = +10 cm on the x-axis. If the
magnitude of the magnetic field at a certain time (t = 0) starts to decrease at a rate of
−0.10 T/s, what is the ELECTRIC force (magnitude and direction) acting on +Q? Describe
the orbit of the charge qualitatively.

SOLUTIONS
The changing magnetic field induces an electric field (law of Faraday). This electric field ~E

produces a force on the charge which is equal to ~Felec = Q ~E. So we need to calculate the
electric field vector. This can be done with the law of Faraday.∮
P

~E ◦ d~̀= − ∂

∂t

∫
S

~B ◦ d~a.

Because of symmetry we take for P a circular path in the xy plane with radius s. The
path integral along P and the area which encloses the changing magnetic flux have the
same radius (s); furthermore, the inner products in the Faraday equation are maximum.
Therefore, we find:

2π s E = −π s2∂B
∂t

from which we find E as function of s.

The electric force is therefore: F = Q
s

2

∂B

∂t
= 5.0× 10−9 N.

We note that because of this electric force, the charge will be accelerated and thus gets a
velocity.
However, the magnetic field still exists and therefore there will be also a magnetic force,

which is equal to Fmag = Q
(
~v × ~B

)
. At t = 0 there is only the electric force and the

direction of v will be in the direction of E; this will be in the xy plane and has direction ϕ.
The electric field at (x, y) = (0.1, 0.0) points in the negative y direction (see below). Thus
the v vector at t = 0 is also in the negative y direction: the magnetic force points in the
negative x direction, thus towards the origin. The particle starts to move in the negative
y direction, but bends to the negative x direction, both because of the electric and of the
magnetic forces.
We find the direction of the electric field vector using the law of Lenz or by using the
differential equation for the law of Faraday. To use the law of Lenz we can introduce a
”fake” wire circular coil centered at the origin. To counteract the changing magnetic field
flux enclosed by this coil, according to Lenz’ law a current will develop and thus current
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runs in a direction to increase again the magnetic strength. Thus is only possible if the
current runs in the clockwise direction; therefore the electric field vector which drives this
current goes in the negative ϕ direction; at (x, y) = (0.1, 0.0) this is the negative y direction.
If we use the differential equation of the law of Faraday, we need to calculate the curl of
the electric field vector. Because of symmetry reasons the only component that matters is

the part ~∇× ~E in the z-direction.
1

s

[
∂

∂s

(
sEϕ −

∂Es

∂ϕ

)]
= −∂Bz

∂t
Because Bz points into the paper (negative z direction), and the time derivative of B has
a negative value (minus times minus = plus) and because E has only a component in the
ϕ-direction, we find thus:
1

s

∂

∂s
(sEϕ) = −

∣∣∣∣∂B∂t
∣∣∣∣ = − |a|

We can integrate this in parts to find: Eϕ = −1

2
|a| s. Thus pointing in the downward

direction at (x, y) = (0.1, 0.0).
By the way, to fully describe the motion you need to solve the following differential equation:

m
∂~v

∂t
= Q (Eϕ + ~v ×Bz)


